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Abstract—Many real-world data come in the form of graphs.
Graph neural networks (GNNs), a new family of machine
learning (ML) models, have been proposed to fully leverage graph
data to build powerful applications. In particular, the inductive
GNNs, which can generalize to unseen data, become mainstream
in this direction. Machine learning models have shown great
potential in various tasks and have been deployed in many
real-world scenarios. To train a good model, a large amount
of data as well as computational resources are needed, leading
to valuable intellectual property. Previous research has shown
that ML models are prone to model stealing attacks, which aim
to steal the functionality of the target models. However, most
of them focus on the models trained with images and texts.
On the other hand, little attention has been paid to models
trained with graph data, i.e., GNNs. In this paper, we fill the
gap by proposing the first model stealing attacks against inductive
GNNs. We systematically define the threat model and propose six
attacks based on the adversary’s background knowledge and the
responses of the target models. Our evaluation on six benchmark
datasets shows that the proposed model stealing attacks against
GNNs achieve promising performance.1

I. INTRODUCTION

Many real-world data come in the form of graphs, such as
molecular graphs [39] and social networks [60]. The graph-
structured data contains nodes with features and edges that
represent the relationship between them. To fully unleash the
potential of graph data, a new family of machine learning (ML)
models, namely graph neural networks (GNNs), has been
proposed [23], [42], [81], [91], [92]. Compared to classical
machine learning models, e.g., convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), which are
designed to process images and texts, GNNs offer state-of-
the-art performance by taking both node features as well as
graph structures into consideration.

Prior work unveiled that machine learning models are
vulnerable to model stealing attacks [34], [51], [52], [70],
[74], where an adversary with query access to a target model
can steal its parameters or functionality. Concretely, the ad-
versary first crafts a number of queries as the input to the
target model’s API and obtains the corresponding outputs.
Then, a local surrogate model is trained on the paired data
(input, output). As such, the surrogate model may not only
violate the intellectual property of the target model but also
serve as a stepping stone for further attacks like membership
inference [5], [8], [13], [29], [35], [45], [48], [58], [59], [63]
and adversarial examples [6], [22], [54], [55], [69], [79].
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Notably, most of the current efforts on model stealing attacks
concentrate on ML models with images and text data [41],
[51], [52], [70], [74]. On the other hand, the potential model
stealing risks of GNNs have been largely understudied.

There exists some preliminary work on model stealing
attacks against GNNs [16], [78]. They focus on transductive
GNNs and assume that the attackers have access to the training
process of the target model, in which the training and query
graphs are used to train the target model. As such, GNN model
stealing attacks in a transductive setting are unrealistic.

In this paper, we concentrate on a more realistic and
popularly deployed GNN setting, i.e., inductive GNNs, which
can generalize well to unseen nodes [25], [73], [85]. In
this setting, the adversary only queries the target model via
remotely accessible API. They do not tamper with the training
process of the target model. Note that in this paper, we focus
on node classification tasks.

When an adversary uses a query graph (i.e., a graph induced
by a set of query nodes) to query the target model, they
could face different types of responses from the target model,
ranging from the posterior distribution over the possible labels
of query nodes (called predicted posterior probability) to 2-
dimensional t-SNE [72] projection (for graph visualization).
Therefore, it is important to summarize a complete taxonomy
of the threats for model stealing attacks against GNNs. Also, it
is challenging to design a general attack methodology that can
be applied to different attack scenarios. Moreover, in reality,
the graph structural information of the query graph can be
missing. It is inevitably harder for the adversary to launch
attacks against GNNs.

To tackle these challenges, we make the following contri-
butions in this paper. We first systematically define the threat
model of model stealing attacks against inductive GNNs by
categorizing the adversary’s knowledge into two dimensions,
i.e., query graph and target model’s response (see Section III).
Concretely, we assume that the adversary has a query graph
that contains a number of nodes and their features. The node
features come from the same distribution of the graph used
to train the target model. However, the graph structure of the
query graph may be missing (i.e., the edges connecting the
nodes may not be available). Regarding the target model’s
response, we consider three cases, i.e., the predicted posterior
probability, the node embedding vector, or the 2-dimensional
t-SNE projection. In turn, we have six attack scenarios under
our threat model.

https://github.com/xinleihe/GNNStealing


We propose two types of attacks, i.e., Type I and Type
II, based on the information provided by the query graph
(see Section IV-A). Each type has three variants depending
on the target model’s responses. We design a general attack
framework that can be applied to all the scenarios. Concretely,
the framework is assembled with two major components. The
first component is used to learn the discrete graph structure if
the structural information is not available in the query graph.
Then, the second component builds a surrogate model by
jointly learning from the nodes’ features and the response of
the target model.

Ideally, the surrogate model should achieve both high
accuracy and high fidelity whereby accuracy measures the
prediction correctness [54], [70] and fidelity measures the
prediction agreement between the target model and the sur-
rogate model [34], [41]. We evaluate all our attacks on three
popular inductive GNN models including GraphSAGE [25],
Graph Attention Network (GAT) [73], and Graph Isomor-
phism Network (GIN) [85] with six benchmark datasets,
i.e., DBLP [53], Pubmed [61], Citeseer Full [21], Coauthor
Physics [62], ACM [76], and Amazon Co-purchase Network
for Photos [50]. Extensive experiments demonstrate that our
model stealing attacks consistently achieve strong performance
in both types of attacks. For instance, when the target model
is GIN trained on the Pubmed dataset and the response is
embeddings, our Type I attack achieves a 0.877 accuracy score
and a 0.906 fidelity score (see Section V-B). In particular,
when the aforementioned target model’s response is the t-SNE
projection, our attack still achieves strong performance with
a 0.823 accuracy score and a 0.846 fidelity score. Moreover,
we empirically demonstrate that even without graph structure
information, i.e., Type II attacks, the adversary could still
launch effective attacks, extracting high-accuracy and high-
fidelity surrogate models (see Section V-C). This further
demonstrates the severe model stealing risks of GNN models.

In summary, we make the following contributions.
• Our work is the first research effort to perform model

stealing attacks against inductive GNNs.
• We systematically define the threat model to characterize

an adversary’s background knowledge along two dimen-
sions. Moreover, we propose six different attack scenarios
based on the adversary’s different background knowledge.

• Extensive evaluation on three popular inductive GNN
models and six benchmark graph datasets demonstrates
the efficacy of our attacks.

II. BACKGROUND

A. Notations
We define a labelled, undirected, unweighted, attributed graph
as G = (V,E,X,C), where V = {v1, v2, ..., vn} denotes
the set of nodes, E ⊆ {(v, u)|v, u ∈ V} denotes the
set of edges, xi ∈ X denotes the feature of node vi,
and one-hot vectors ci ∈ C denotes the label of node vi.
We denote A ∈ {0, 1}n×n as the adjacency matrix, where
Avu = 1,∀(v, u) ∈ E. As such, G can also be represented as
G = (A,X,C). The original graph used to train a GNN

TABLE I: Summary of the notations used in this paper. We use
lowercase letters to denote scalars, bold lowercase letters to
denote vectors and bold uppercase letters to denote matrices.

Notation Description

G = (V,E,X,C) graph
v, u ∈ V node
n = |V| number of nodes
A ∈ {0, 1}n×n adjacency matrix
d dimension of a node feature vector
b dimension of a hidden node feature vector
ci ∈ C node label/class
N l(v) l-hop neighborhood of v
Gl

v subgraph induced by l-hop neighborhood of v
X ∈ Rn×d node feature matrix
xv ∈ Rd feature vector of node v
H ∈ Rn×b hidden state matrix
hv ∈ Rb hidden state of v
GO /GQ training/query graph
R query response
Υ ∈ Rn×2 2-dimensional t-SNE projection
Θ ∈ Rn×|C| predicted posterior probability
MT /MS target/surrogate GNN model

model is denoted as GO (training graph). We use N l(v)
to denote l-hop neighborhood of v, and Gl

v to denote the
subgraph induced by l-hop neighborhood of v. Besides, we
denote the target GNN model as MT and the surrogate GNN
model as MS . The notations introduced here and in the
following sections are summarized in Table I.

B. Preliminaries

Graph Neural Networks (GNNs). Representation learning
of graph-structured data is challenging because both graph
structure and node features carry important information. Graph
Neural Networks (GNNs) provide an effective way to fuse
information from network structure and node features. Most
of the GNNs follow a neighborhood aggregation strategy,
where the model iteratively updates the representation of a
node through message passing and aggregating representations
of its neighbors. After l iterations of aggregation, a node’s
representation, denoted as hv , captures the structural infor-
mation within its l-hop network neighborhood. In practice, a
GNN contains several graph convolutional layers. Each graph
convolutional layer of a GNN model can be defined as follows:

hl
v = AGGREGATE(hl−1

v ,MSG(hl−1
v ,hl−1

u )), u ∈ N (v)
(1)

Note that the number of graph convolutional layers is
equivalent to the l-hop network neighborhood that a GNN
model can reach in the graph. Once trained, the GNN can map
each node to an embedding vector. These node embeddings
can be directly used for downstream machine learning tasks
that can be categorized into three levels, i.e., node-level (e.g.,
node classification [25], [40], [73], [85]), link-level (e.g.,
link prediction [24], [56], [71]), and graph-level (e.g., graph
classification [43], [87]).
Inductive GNN Models. There are two settings for training
the GNNs, i.e., transductive setting and inductive setting. In



the transductive setting, a GNN learns from both labelled
and unlabelled nodes in a single fixed graph at the training
time and predicts the labels of those unlabelled nodes once
the training is done, e.g., vanilla graph convolutional network
(GCN) [40], DeepWalk [56], etc. However, transductive GNN
models must be retrained if new nodes are introduced to the
graph. A more popular one is the setting of inductive learning,
where the learned GNN model can be generalized to the graphs
that are previously unseen during the training procedure. The
reusable GNN model avoids time-consuming retraining if a
graph includes more nodes or even subgraphs. It facilitates
the real-world practices of graph data analytics. We therefore
focus on the inductive setting in our study. We briefly introduce
three widely used inductive GNN models below.
• GraphSAGE. GraphSAGE proposed by Hamilton et

al. [25] is the first inductive GNN model. Inspired by the
Weisfeiler-Lehman test for graph isomorphism, Graph-
SAGE generalizes the original GCN [40] into the in-
ductive setting with different aggregation functions. Take
widely used mean aggregation operator as an example,
GraphSAGE can be defined as follows:

hl
v = MEAN(hl−1

v ∪ {hl−1
u ,∀u ∈ N (v)}) (2)

• Graph Attention Network (GAT). It is straightforward to
observe that GraphSAGE assigns the same weight to all
neighbors (i.e., 1/N (v)) when aggregating v’s neighbor-
hood information. However, in practice, different nodes
may play different roles in the target node embedding.
Inspired by the attention mechanism in deep learning [1],
Velickovic et al. [73] propose GAT that leverages multi-
head attention to learn different attention weights and
pays more attention to the important neighborhoods. Its
aggregation function can be formulated as:

hl
v =

∥∥∥Z
z=1

(
∑

u∈N (v)

αz
uv ·Wz · hl−1

u ) (3)

where ‖ is the concatenation operation, Z is the total
number of projection heads in the attention mechanism,
W z is the linear transformation weight matrix, and αz

uv is
the attention coefficient calculated by the z-th projection
head.

• Graph Isomorphism Network (GIN). GraphSAGE can be
treated as an instance of the Weisfeiler-Lehman test.
Xu et al. [85] propose Graph Isomorphism Network
(GIN) to extend GraphSAGE with arbitrary aggregation
functions on multi-sets. GIN is theoretically proven to
be as powerful as the Weisfeiler-Lehman test of graph
isomorphism. Its aggregation function can be represented
as:

hl
v = (1 + εl−1) · hl−1

v +
∑

u∈N (v)

hl−1
u (4)

where ε is a learnable parameter to adjust the weight of
node v.

The inductive GNNs usually employ shared weight parame-
ters and neighborhood sampling to speed up the computation.

Responses by Inductive GNNs. An inductive GNN model
learns the parameters of aggregation functions in different
layers from the training data. Once trained, the learned GNN
model can infer previously unseen data. Such capability paves
the way for remotely deployed GNN models in the wild (e.g.,
GROVER [57], DGL [75]) to make inferences on graphs for
customers via publicly accessible API. Moreover, a trained
GNN model is often used to perform node embedding tasks,
and the resulted node embeddings can then help to per-
form other downstream ML tasks (e.g., fine-tuning pretrained
GNNs [30], model partitioning [64]) or graph visualization.
Therefore, in this paper, we consider three query responses
from a target GNN model when facing a query node, namely
predicted posterior probability, embedding vector, and 2-
dimensional t-SNE projections from the embedding [23], [42],
[81], [91], [92]. Specifically, given a query node v ∈ VQ, we
feed its l-hop subgraph (i.e., Gl

v) to a remote GNN model
and obtain one of the three corresponding responses. All the
query nodes with the edges between them can form a query
graph/dataset, denoted as GQ. Note that GQ is not necessarily
connected and for each query node, the l-hop subgraph is
extracted from GQ only.

III. THREAT MODEL

In this section, we outline the threat model to characterize the
adversary’s background knowledge and the goal of the model
stealing attack.

A. Attack Setting
We frame our attack in a black-box setting, which is the
most challenging scenario for the adversary mentioned in
previous work [27], [28], [34], [51], [63]. That is, the adversary
has no knowledge of the target GNN model (e.g., model
parameters, model architecture) and cannot tamper with its
training process (e.g., training graph GO). Our attack setting
is fundamentally different from the previous attacks [16], [78].
These attacks assume that the adversary can gain access to
the target model’s training process. However, such a strong
assumption is unrealistic in the real world as it is impractical
to expect an adversary can interfere with the target model
at its training time. Note that in this paper we focus on the
aforementioned three node-level query responses. The target
model is an inductive GNN model which accepts node v’s
l-hop subgraph Gl

v as input and returns the corresponding
response for the given node v, i.e., its predicted posterior
probability, node embedding vector, or 2-dimensional t-SNE
projection.

B. Adversary’s Goal
Following the taxonomy defined by Jagielski et al. [34],
the adversary’s goal falls into two categories, i.e., theft and
reconnaissance.
• The goal of the theft adversary is to build a surrogate

modelMS that matches the accuracy of the target model
MT on the target task [54], [70]. The theft adversary’s
motivation is compromising the intellectual property and
violating the confidentiality of the target model MT .



• Subtly different from the theft adversary, the reconnais-
sance adversary aims to build a surrogate model that
closely matches the behavior of the target model. That is,
MS seeks an agreement toMT on any input. A surrogate
model MS with high fidelity to MT enables the adver-
sary to leverage it as a stepping stone to launch further
attacks. For instance, the adversary can craft adversarial
examples using this MS instead of risking potentially
detectable queries to the target model MT [54].

Note that the reconnaissance adversary’s motivation is faith-
fully copying the behavior of MT (e.g., MS and MT may
make the same wrong/correct prediction of an input) though
both adversaries intend to get close to the performance (i.e.,
accuracy) of the target model. We refer the audience to the
work by Jagielski et al. [34] for additional discussions.

C. Adversary’s Capability
We first assume an adversary can make queries to a target
modelMT . Given a query graph GQ, the adversary can query
all its nodes with their corresponding l-hop subgraphs, then
obtain the query responses R. This assumption is in line with
the adversarial machine learning setting, whereas the attackers
exploit the remote target model MT via publicly accessible
API [27], [28], [52], [70]. The response R of the whole query
graph GQ, depending on the target model’s specification, may
be returned in the form of a node embedding matrix (denoted
as H), a predicted posterior probability matrix (denoted as
Θ), or a t-SNE projection matrix of H (denoted as Υ), where
each row is a 2-dimensional vector. These three responses
are representative of the real-world API output. For exam-
ple, t-SNE and node embeddings are widely returned in the
scenarios of graph visualization [32], transfer learning [94],
federated learning [26], fine-tuning pretrained GNNs [30],
and model partitioning where the target model is split into
local and cloud parts bridged by embeddings information [64].
Moreover, these responses characterize three different levels
of knowledge the adversary may gain access to in practice.
For instance, the t-SNE projection matrix Υ is usually used
for data visualization. It contains the least information that an
adversary can harvest. We later show that the adversary can
still launch the attack through such data visualization function
of a remote model.

Second, we assume that the query graph GQ (both node
features XQ and graph structure AQ) is from the same
distribution of the training graph GO used to train the target
modelMT . Here we consider the term “same distribution” as
GO and GQ are drowned randomly from the same dataset.
We do not necessarily require GO and GQ to have the same
graph characteristics. Besides, the nodes in the query graph
GQ does not need to be in the training graph GO. For
example, both GO and GQ can be subgraphs sampled from
social networks like Twitter but there is no overlap with each
other. This assumption is in line with recent attacks to neural
networks where an adversary uses part of a public dataset to
exploit the target model [27], [34] and graphs are available in
some domains (e.g., social networks and molecular graphs).

We further relax this assumption and demonstrate that the
adversary can still launch effective attacks even without the
graph structural information of GQ. This weak assumption of
adversary knowledge makes our attack more practical in real-
world scenarios. For instance, the adversary may compromise
a user database and acquire their profile information. However,
the relationships among the users, i.e., the graph structure, may
not be revealed. We later demonstrate that the adversary can
still launch high-performance model stealing attacks in this
scenario (see Section V).
Notes. Our threat model is different from the causative and
evasion adversarial attacks to GNNs [10], [14], [37], [66],
[82], [83]. Those attacks allow the attackers to manipulate
the training graphs in order to change the parameters of
the target model, or modify the node features and/or graph
structure to fool the inductive GNN models. Our attack is an
instance of exploratory attacks. We do not tamper with the
original training process. The goal is thereof not to change
the parameters or fool the target GNN model. Instead, it is
designed to steal a copy of a target inductive GNN model.

Our attack also differs from the existing model stealing
attacks against transductive GNNs [16], [78] in several key
aspects. First, these attacks [16], [78] focus on attacking
transductive GNN models. Both methods assume that the
query graph is part of the graph used for training the target
GNN model and must be involved in the training process,
hence unrealistic. Our attacks instead focus on a more realistic
stealing attack scenario whereas the adversary only queries the
target model via remotely accessible API. We do not tamper
with the training process of the target model. In turn, our
threat model is practical and fills the gap to understand if
both theft and reconnaissance adversaries can steal inductive
GNNs with high accuracy and high fidelity. Moreover, the
existing methods [16], [78] are limited to the GCN model
(i.e., model dependent) and rely on node predicted posterior
probability scores to launch attacks. In contrast, our attack
is model agnostic and can still successfully copy the target
model’s behavior with marginal information. Besides, our
attack setting is different from Attack-3 proposed by Wu et
al. [78]. Specifically, Attack-3 in [78] trains the surrogate
model without querying the target model, while our attacks
do interact with the target model. Note that it is impractical
to attain the reconnaissance goal without interacting with the
target model [28], [45]. Also, the target model considered by
Wu et al. [78] is a transductive GNN while ours focuses on
the inductive GNN (the difference between transductive and
inductive GNN is described in Section II).

IV. MODEL STEALING ATTACK

In this section, we first outline 6 attack scenarios that can be
launched by the adversary given different levels of knowledge.
Then we propose our attack framework.

A. Attack Taxonomy
As outlined in Section III, the adversary has two main
pieces of information at their disposal to launch the model



Fig. 1: Overview of model stealing attack against inductive
GNNs.

stealing attack: the query graph GQ = (AQ,XQ,CQ) and
its corresponding query response R (i.e., node embedding
matrix H, predicted posterior probability matrix Θ, or t-SNE
projection matrix Υ). Recall that the adversary may not have
graph structural information of the query graph GQ (i.e.,
the adjacency matrix AQ may be missing). We thus have 6
possible attack scenarios falling into two types (see Table II).
• Type I Attack. When the adversary obtains the query

graphs which are of the same distribution as the train-
ing graphs, they can launch a Type I attack against
the target model. The application scenarios of Type I
attack include side-effects prediction due to drug interac-
tions [95], financial fraud detection [47], recommendation
systems [80], etc. In these cases, the adversary can obtain
the query graphs (e.g., drug-protein interaction graphs,
transaction graphs, user-item purchase graphs) that are
of the same distribution of the training graphs used to
train the target models due to the wide availability of
such graphs.

• Type II Attack. When the graph structural information
is missing, the adversary can resort to a Type II attack to
steal the target model. For instance, social networks such
as Instagram or Tinder do not reveal the social relation-
ship of (private) user accounts. However, an adversary can
crawl users’ profile information without social relations
(i.e., graph structural information). Then they leverage
Type II attacks to rebuild a relationship graph and steal
the target models offered by these service providers.
Besides, Type II attacks can also be used in stealthy
insider threat scenarios. For instance, a company may
enforce data segregation due to data privacy and security
concerns (e.g., one department has user information and
another has the relationship graph). To train a joint
model, the company needs to perform vertical federated
learning [86]. The insider attackers may leverage the
information they can access (e.g., user information) to
steal the joint model using our Type II attack.

It is straightforward to observe in Table II that the attacks
are increasingly harder in the row order. For instance, the
Type II.3 attack is the most challenging scenario from the

TABLE II: Attack Taxonomy. The attacks are increasingly
harder in row order.

Attack AQ
Response R

H Θ Υ

I.1 3 3
I.2 3 3
I.3 3 3

II.1 7 3
II.2 7 3
II.3 7 3

adversary’s perspective since they only have a set of node
features to start with. As such, they first need to restore
the relationships among the nodes and build the query graph
GQ, then leverage the t-SNE projection matrix obtained from
MT to steal the target model. Besides, model stealing attacks
against the classical ML models focus on the scenario that the
remote models return the predicted posterior probability. We
note that the node embedding and the t-SNE projection-based
query responses are the new attack surface of the inductive
GNN models and outline the technical details in Section IV-B.

B. Attack Framework
To tackle the aforementioned challenges, we propose a unified
attack framework as illustrated in Figure 1 to launch both Type
I and II attacks. It has two components. The first component
(¶ in Figure 1) learns the missing graph structure AQ. The
output of the first component is a learned query graph GQ.
This component is designed to facilitate Type II attacks, hence
not required for Type I attacks. It is important to note that
this reconstruction process is done locally at the attacker’s
side. They do not interact with the target model. The second
component (· in Figure 1) learns a surrogate model from the
response of the target model given the query graph GQ. The
output of the second component is a learned surrogate model
MS . We outline their details below.

1) Learn Discrete Graph Structure (¶)
Recall that the adversary does not have the adjacency matrix
AQ for the query graph GQ at their disposal in Type II attacks
(see Section III). However, the graph structure is necessary for
the adversary to conduct the attack. As such, without a graph
structure to piece XQ together, the adversary must first build
the adjacency matrix AQ from query graph GQ and then query
the target model MT . The goal of this component is thereof
to learn a high-quality discrete graph structure that enables the
adversary to query and gain useful knowledge from the query
response returned by the target model.

One common approach is to create a k-nearest neighbor
(kNN) graph from node features XQ. However, the efficacy of
the resulting kNN graph and consequent GNN model rests on
the choice of k (e.g., kNN graphs often produce nodes with
extremely high degrees) and the chosen similarity measure
over the node features. To this end, we leverage the IDGL
framework proposed by Chen et al. [11] to learn a query
graph GQ by minimizing a joint loss function combining both
the task-dependent prediction loss and the graph regularization



loss. Note that task-dependent prediction loss is flexible, and
can be tailored to use different loss functions (e.g., node clas-
sification loss or link prediction loss). The graph regularization
loss controls the smoothness, connectivity, and sparsity of the
resulting graph. Additional details can be found in [11].

To launch Type II attacks, the adversary first initiates a
kNN graph constructed based on multi-head weighted cosine
similarity, then utilizes the IDGL framework to search for a
hidden graph structure that augments the initial kNN graph
structure using the aforementioned joint loss function. Note
that the kNN graph is only used to seed the initial graph
structure. The final learned graph structure is optimized during
the learning process and may not contain the edges from the
original kNN graph. This component’s output is a learned
query graph GQ.

2) Learn Surrogate Model (·)
The goal of the second component is to learn a surrogate GNN
model from the query response returned by the target model
given a query graph GQ. To this end, we first discuss our
observation of three state-of-the-art inductive GNN models,
namely GraphSAGE, GIN, and GAT. We then propose a
unified framework to learn surrogate models given both Type
I and Type II attacks.

Observation. According to the convolution operations defined
on graphs, graph neural networks can be categorized as
spectral approaches and spatial approaches [12], [81], [92],
[93]. For spectral approaches, the graph is represented with
a Laplacian matrix according to the spectral theories with
the convolution operation defined in the sequence domain
via Fourier transform. Different from spectral approaches,
spatial approaches define graph convolutions by collective
information propagation (i.e., propagating node information
along edges) and perform convolution by considering node
neighborhoods. Leveraging the insights from [12], [81], [92],
[93], in spatial-based GNN methods, at l-th layer, node em-
bedding hl

v is iteratively updated using Equation 5 where Φ
and Ψ are weight functions, and η is a normalization factor.

hl
v = Φ(v)hl−1

v +
∑

u∈N (v)

Ψ(u)
hl−1
u

η
(5)

If Ψ assigns the same weight to all neighbors Equation 5
can be rewritten in matrix form as Equation 6, where I is
an identity matrix and Ã is a normalized form of adjacency
matrix A. Note that H0 = X.

Hl = (ΦI + ΨÃ)Hl−1 (6)

It is straightforward to prove that GraphSAGE (Equation 2 in
Section II) can be written in matrix form as Equation 7, where
Φ = 1, Ψ = 1, and Ã is a random-walk normalized Laplacian
matrix.

Hl = (I + Ã)Hl−1 (7)

Similarly, GIN (Equation 4 in Section II) can be written as
Equation 8, where Φ = 1 + ε, Ψ = 1, A is unnormalized
adjacency matrix.

Hl = ((1 + ε)I + A)Hl−1 (8)

In the same way, GAT (Equation 3 in Section II) can be written
as Equation 9, where Ψ = Ξ is a learnable neighbor weight
matrix and Φ = 0.

Hl = (Ξ⊗A)Hl−1 (9)

Given Equation 7, Equation 8, and Equation 9, we can see
that there exists an intrinsic connection among GraphSAGE,
GAT, and GIN (i.e., they are special cases of Equation 6). It
is evidential that these models are spatial-based GNN models
through adopting different designs for feature aggregation.
This observation enables us to design a unified attack frame-
work to leverage the query graph GQ as the data and the
query response R as the supervised information to build the
surrogate model in a unified manner.
Learning Framework. Our attack framework is illustrated
in Figure 1. The surrogate model Ms in · consists of two
modules. The first module is a customized inductive GNN
model (denoted as F) taking all nodes’ l-hop subgraphs from
GQ as the training data and the query response R as the
supervised information. Since the responses from MT are
vectors in Euclidean space, they reflect the spatial connectivity
among nodes either from the graph connectivity perspective (t-
SNE projection or node embedding), or from the node label
perspective (the predicted posterior probability). That is, the
nodes that are close or connected in the query graph GQ

should be close in Υ or H, and the nodes that are of the
same label should be close in Θ.

Following the above observation, the key idea of our attack
is that we ignore the response types and uniformly treat all
three possible responses as embedding vectors. As such, for
the first module, the goal is to minimize the RMSE loss (LR)
between ĤQ and R as shown in Equation 10.

ĤQ = F(XQ,AQ)

LR =
1

nQ
‖ĤQ −R‖2,1 (10)

where nQ denotes the number of nodes of the query graph GQ.
Here Ĥ keeps the same dimension as R. The rationale of using
the RMSE loss is that F is optimized to maintain the similar
spatial connectivity among the nodes in ĤQ as suggested by
R. Note that the output from the first component cannot be
directly used for node classification tasks. In light of this, we
employ an MLP as the classifier (denoted as O). It takes the
output from the first module (i.e., ĤQ) as the input and CQ as
the supervision information to minimize the prediction error
(LP ) as shown in Equation 11.

LP = − 1

nQ

∑
v∈GQ

∑
i∈|CQ|

cilog[O(hv)i] (11)



TABLE III: Summary of datasets.
Dataset |V| |E| |X| |C| Density

DBLP 17,716 105,734 1,639 4 0.0007
Pubmed 19,717 88,648 500 3 0.0005
Citeseer 4,230 5,358 602 6 0.0006
Coauthor 34,493 495,924 8,415 5 0.0008
ACM 3,025 26,256 1,870 3 0.0057
Amazon 7,650 143,663 745 8 0.0049

We optimize the first module with LR, then we freeze it
and optimize the second module with LP . The two modules
are then chained together as our surrogate model. Followed
by Orekondy et al. [52], we assume that CQ is obtained by
the adversary.

Our attack design enjoys two-fold flexibility. First, our
attack allows the adversary to conduct the attack without
knowing the target model’s architecture. This makes the threat
model closer to the real-world scenario where the adversary
only has query access to the target model. Second, our attack
framework shows that node embedding and 2-dimensional
t-SNE projection as the query response can be the new
attack surface of the inductive GNN models. Notably, t-SNE
projection is for data visualization purposes. It barely unveils
the graph structural information to the adversary. However,
we demonstrate that our attack can still successfully copy the
target model’s behavior from such marginal information.

V. EVALUATION

In this section, we perform an in-depth analysis of the pro-
posed model stealing attack against inductive GNNs. We first
introduce the experimental setup, and present the evaluation
results for Type I and Type II attacks from both theft and
reconnaissance adversary’s perspectives. We then explore how
various query budgets may affect the attack performance. Fi-
nally, we study how different hyperparameters of the surrogate
model may influence the attack performance.

A. Experimental Setup

Datasets. We use 6 public datasets to evaluate the perfor-
mance of our attack, including DBLP [53], Pubmed [61],
Citeseer Full (abbreviated as Citeseer) [21], Coauthor Physics
(abbreviated as Coauthor) [62], ACM [76], and Amazon Co-
purchase Network for Photos (abbreviated as Amazon) [50].
These datasets are widely employed as benchmark datasets to
evaluate the performance of GNNs [25], [40], [85]. Among
them, DBLP, Pubmed, and Citeseer are citation networks with
nodes representing publications and edges indicating citations
among these publications. Coauthor is a user interaction net-
work where nodes represent the users and edges represent
interactions between them. ACM and Amazon are cooperative
networks where nodes represent the papers/items and there is
an edge between two nodes if they have the same author or
purchased together. We use these datasets to verify the efficacy
of our attacks given different graph characteristics (e.g., graph
size, node feature size, number of classes, etc.). Statistics of
these datasets are summarized in Table III.

Dataset Configuration. For each dataset, we split them into
three parts. The first part consists of 20% randomly sampled
nodes that are used to train the target modelMT . The second
part consists of 30% randomly sampled nodes, forming our
query graph GQ. We further show that our attacks are still
effective with fewer nodes to form the query graph (see
Figure 6). The third part consists of the rest 50% of the nodes,
functioning as the testing data for both MT and MS . This
setting matches the inductive learning on evolving graphs as
laid out in [25].
Target Model (MT ). We use GIN, GAT, and GraphSAGE
as our target models’ architectures in our evaluation. For
reproducibility purposes, we outline the details below.
• GIN. We use a 3-layer GIN model with a fixed neighbor-

hood sample size of 10 at each layer. For the first hidden
layer, we set the hidden unit size to 256. For the second
layer, we set the hidden unit size to the embedding size
(i.e., 64, 128, or 256 in our experimental setting). The
final layer is used for classification.

• GAT. We use a 3-layer GAT model with a fixed neigh-
borhood sample size of 10 at each layer. The first layer
consist of 4 attention heads and the hidden unit size
is 256. The second layer consists of 4 attention heads
and the hidden unit size is the embedding size. The
final layer is used for classification following the original
design [73].

• GraphSAGE. Following Hamilton et al. [25], we use a
2-layer GraphSAGE with neighborhood sample sizes of
25 and 10 respectively. For the first hidden layer, we set
the hidden unit size to 256. For the second layer, we set
the hidden unit size to the embedding size. Each layer
employs a GCN aggregator and uses 0.5 dropout rate to
prevent overfitting. Finally, we use a linear transformation
layer for classification.

All models use cross-entropy as the loss function, ReLU
as the activation function between layers, and Adam as the
optimizer with an initial learning rate of 0.001. We train
all models for 200 epochs and select the best models with
the highest validation accuracy. All models above follow the
design specifications outlined in the respective papers.
Query Response (R). For the node embedding H, we fix the
sizes to three commonly used values, i.e., 64, 128, and 256.
For the node predicted posterior probability Θ, the dimension
sizes (i.e., the number of classes) are dataset dependent and
outlined in Table III. For the node projection Υ, we use t-SNE
to project the node embedding H into 2-dimensional vectors,
which cover most of the data visualization cases.
Surrogate Model (MS). Recall our attack design in Sec-
tion IV-A, the surrogate model consists of two components
to provide extensibility. The first component is a customized
GNN model taking the subgraph extracted from GQ as the
input and using the RMSE as its loss function. The second
component is a 2-layer MLP with the hidden unit size of
100. It takes the output from the first component as the
input and uses the cross-entropy as its loss function. Both



components use Adam optimizer with a learning rate of 0.001.
We train the first and the second components for 200 epochs
and 300 epochs, respectively. For evaluation purposes, we use
customized GraphSAGE, GAT, and GIN models as the first
component in our surrogate model. The details are outlined
below.

• GIN. We use a 2-layer GIN model with neighborhood
sample sizes of 10 and 50 respectively. The hidden unit
size is 256 for the first layer. For the second layer, we
set the hidden unit size to the size of the query response.

• GAT. We use a 2-layer GAT model with neighborhood
sample sizes of 10 and 50 respectively. Both the first and
the second layers consist of 4 attention heads and we
follow the same hidden unit size as GIN we mentioned
above.

• GraphSAGE. We use a 2-layer GraphSAGE with neigh-
borhood sample sizes of 10 and 50 respectively and
follow the same hidden unit size as GIN we mentioned
above.

Query Graph Reconstruction Configuration. We use the
IDGL framework proposed by Chen et al. [11] to learn the
missing graph structural information, i.e., AQ, of the query
graph GQ for Type II attacks. For simplicity, we use node
classification loss and leave experimenting with other loss
functions as future work. The initial k of kNN graph is set
to 24. We use a 2-layer (hidden unit size is set to 256)
GraphSAGE with GCN aggregator to learn the node embed-
ding. Weighted cosine similarity matrices with 8 attention
heads are employed to decide if there exists an edge between
two node embeddings during the graph learning process. The
graph structure and the GraphSAGE parameters are jointly
and iteratively learned by minimizing a hybrid loss function
combining both the node classification loss and the graph
regularization loss. We set the cutoff value ε to 0.99 to identify
the final edges in the learned adjacency matrix AQ of the
query graph GQ.

Metrics. Following the taxonomy defined by Jagielski et
al. [34], we use two metrics, i.e., accuracy and fidelity, to
evaluate the performance of our attack. We use accuracy (i.e.,
the number of correct predictions made divided by the total
number of predictions made) as our evaluation metric of theft
adversary. Accuracy has been dominantly used in evaluating
node classification performance of GNNs [25], [40], [73].
Recall that the goal of reconnaissance adversary is to closely
match the behavior of the target model (see Section III), we
use fidelity (i.e., the number of predictions agreed by bothMS

and MT ) as the second evaluation metric of our attack [34],
[38]. Both metrics are normalized between 0 and 1. Higher
scores imply better performance.

Runtime Configuration. Note that we have 27 different com-
binations for each response in each dataset (i.e., combinations
of three target models, three responses, and three surrogate
models). All the experiments in this paper are repeated 5 times.
For each run, we follow the same data configuration and report

TABLE IV: The performance of the original classification
tasks on all the 6 datasets using 3 different GNN structures.

Dataset MT

GIN GAT SAGE

DBLP 0.872 0.838 0.858
Pubmed 0.924 0.905 0.909
Citeseer 0.910 0.910 0.918
Coauthor 0.953 0.965 0.956
ACM 0.929 0.935 0.937
Amazon 0.856 0.953 0.937

the mean as well as the standard deviation of the aforemen-
tioned two metrics to evaluate the attack performance.

B. Performance Evaluation: Type I Attacks
We first summarize the accuracy of the target models for the
original node classification tasks in Table IV. We can observe
that all GNN models achieve good performance on all datasets,
which demonstrates that jointly considering node features and
graph structure are effective for classification. We then show
the accuracy and fidelity of Type I attacks in Table V. Due
to space limitations, we only show the attack results when
the adversary uses GraphSAGE as the surrogate model. The
performance results using GIN and GAT as the surrogate
models follow similar patterns and can be found in Appendix
Section A.
Accuracy. As we can see from Table V, Type I attacks can
build surrogate models close to the target models given the
response is predicted posterior probability or node embeddings
(i.e., Type I.1 and Type I.2 attacks respectively). Take the
Pubmed dataset as an example, the target models (i.e., GIN,
GAT, and GraphSAGE) respectively achieve 0.924, 0.905, and
0.909 accuracy scores (see Table IV), while the surrogate
models can consistently achieve at least 0.869 accuracy score
(see Table V). This represents an approximately 0.04 accuracy
score drop in all cases compared to the target models. We can
also observe that Type I attacks can build surrogate models
that offer usable accuracy even the response is a 2-dimensional
t-SNE projection matrix (i.e., Type I.3 attack). For instance,
on the Pubmed dataset, the surrogate models achieve 0.823,
0.743, and 0.844 accuracy scores respectively. This represents
a 0.162 accuracy score drop in the worst case when the target
model is GAT. For the rest of the five datasets, we also
observe a subtle performance drop in Type I.3 attacks. Also,
such performance drop, compared to Type I.1 and Type I.2
attacks, is expected since each t-SNE projection is only a 2-
dimensional vector, which leads to additional information loss.
Overall, our results show that all three Type I attacks can build
usable surrogate models.

Given our experimental configuration (i.e., three target
models and three surrogate models), there are 9 different
combinations for each response type given a single dataset.
Such configuration enables us to understand if the adversary
can reliably steal target models in different circumstances.
Using the Pubmed dataset as an example, we summarize
the attack accuracy performance in Figure 2. We can see
that in general, the adversary can build accurate surrogate



TABLE V: The accuracy and fidelity scores of Type I attacks using different response information on all the 6 datasets. Both
average values and standard deviations are reported. The accuracy differences (in parenthesis) of the surrogate models to the
target models are also reported. We use GraphSAGE as the surrogate model.

Dataset MS

(SAGE)

MT

GIN GAT SAGE

Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity

Projection 0.704±0.030 (-0.168) 0.727±0.032 0.682±0.003 (-0.156) 0.690±0.002 0.708±0.018 (-0.150) 0.748±0.018
Prediction 0.769±0.006 (-0.103) 0.799±0.006 0.787±0.006 (-0.051) 0.827±0.005 0.810±0.005 (-0.048) 0.884±0.004DBLP
Embedding 0.761±0.003 (-0.111) 0.790±0.003 0.793±0.006 (-0.045) 0.835±0.006 0.827±0.003 (-0.031) 0.904±0.003

Projection 0.823±0.035 (-0.101) 0.846±0.035 0.743±0.046 (-0.162) 0.733±0.045 0.844±0.028 (-0.065) 0.888±0.034
Prediction 0.875±0.004 (-0.049) 0.903±0.001 0.869±0.002 (-0.036) 0.898±0.003 0.871±0.002 (-0.038) 0.924±0.003Pubmed
Embedding 0.877±0.003 (-0.047) 0.906±0.004 0.875±0.004 (-0.030) 0.905±0.004 0.881±0.002 (-0.028) 0.941±0.003

Projection 0.685±0.022 (-0.225) 0.668±0.024 0.691±0.014 (-0.220) 0.667±0.012 0.700±0.013 (-0.219) 0.707±0.010
Prediction 0.802±0.008 (-0.108) 0.806±0.011 0.866±0.003 (-0.045) 0.887±0.004 0.878±0.006 (-0.041) 0.909±0.006Citeseer
Embedding 0.804±0.008 (-0.106) 0.811±0.008 0.877±0.004 (-0.034) 0.898±0.005 0.883±0.006 (-0.036) 0.914±0.006

Projection 0.845±0.041 (-0.108) 0.849±0.041 0.816±0.037 (-0.149) 0.817±0.038 0.832±0.031 (-0.124) 0.844±0.031
Prediction 0.942±0.002 (-0.011) 0.948±0.002 0.950±0.002 (-0.015) 0.955±0.002 0.950±0.001 (-0.006) 0.974±0.001Coauthor
Embedding 0.932±0.002 (-0.021) 0.938±0.003 0.944±0.003 (-0.021) 0.948±0.004 0.950±0.002 (-0.006) 0.970±0.003

Projection 0.867±0.021 (-0.062) 0.868±0.032 0.887±0.016 (-0.048) 0.903±0.009 0.905±0.006 (-0.032) 0.936±0.011
Prediction 0.886±0.008 (-0.043) 0.889±0.014 0.914±0.009 (-0.021) 0.931±0.008 0.909±0.016 (-0.028) 0.932±0.018ACM
Embedding 0.884±0.004 (-0.045) 0.874±0.011 0.874±0.009 (-0.061) 0.888±0.011 0.909±0.009 (-0.028) 0.941±0.006

Projection 0.679±0.028 (-0.177) 0.676±0.029 0.720±0.049 (-0.233) 0.724±0.050 0.733±0.062 (-0.204) 0.741±0.064
Prediction 0.811±0.029 (-0.045) 0.778±0.027 0.925±0.008 (-0.028) 0.931±0.006 0.899±0.021 (-0.038) 0.916±0.023Amazon
Embedding 0.890±0.005 (0.034) 0.846±0.018 0.906±0.004 (-0.047) 0.918±0.002 0.925±0.005 (-0.012) 0.941±0.005

(a) t-SNE projection (b) Prediction (c) Embedding
Fig. 2: Heatmap of the accuracy scores of Type I attacks. We show the performance results of 9 combinations of surrogate
and target models given different response information. The accuracy differences (in parenthesis) of the surrogate models to
the target models are also reported. We fix the dataset to Pubmed.

models given different combinations of GNN architectures
for each response. The subtle performance drop only occurs
when GAT is the target model and the response is a t-
SNE projection, i.e., Type I.3 attack. Even in this case, the
adversary can steal usable surrogate models with no more
than a 0.162 accuracy score drop, which indicates our attack
remains effective. Our results demonstrate that the adversary
does not require knowledge about the architecture of target
models to conduct the attacks.

To better illustrate it, take the ACM dataset as an example,
we extract the embeddings of a given set of nodes from
both target and surrogate models and project them into a
2-dimensional space using t-SNE. The result is shown in
Figure 3. We use the triangle (cross) to denote the embeddings
extracted from the target (surrogate) model and different colors
to denote different classes. We find that for both target and
surrogate models, the different classes’ embeddings can be

separated easily. It means that the surrogate model can also
successfully map nodes from different classes into different
space, which lead to high accuracy.

Fidelity. The reconnaissance adversary’s motivation is faith-
fully copying the behavior of the target model. We also
summarize the fidelity performance of the surrogate models
in Table V. It is straightforward to see that the better accuracy
performance a surrogate model can reach, the better fidelity
it can achieve. For instance, on the Coauthor dataset, the
surrogate models reach at least 0.816 accuracy score while
these models achieve at least 0.817 fidelity score to the target
models in all 9 cases. The surrogate models for other datasets
also follow similar patterns. We then calculate the Pearson
correlation coefficient between accuracy and fidelity of the
surrogate models given three target models. The coefficient
scores are 0.957, 0.988, and 0.959 respectively. The results
exemplify that the fidelity of the surrogate models to the target
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Fig. 3: The embeddings (256-dimension) obtained from the
target and surrogate models of 200 randomly selected nodes
on the ACM dataset. We project them into a 2-dimensional
space using t-SNE. The target model is GAT and the surrogate
model is SAGE.

TABLE VI: The accuracy and fidelity scores of Attack-3 [78]
and our Type I attacks on the Pubmed dataset. We use
GraphSAGE as the surrogate model.

Method Accuracy Fidelity

Attack-3 [78] 0.799 0.818
Our attack (GIN) 0.875 0.903
Our attack (GAT) 0.869 0.898
Our attack (SAGE) 0.871 0.924

models is highly correlated with their accuracy performance.
From Figure 3, we can also observe that for each class, the
embeddings extracted from target and surrogate models lie in
the same region, which implies that the surrogate model has
the ability to generate the node embeddings that is close to the
one generated by the target model, which leads to high fidelity.
Besides, we compare our attacks with Attack-3 proposed by
Wu et al. [78] using the overlapping Pubmed dataset and the
results are shown in Table VI. Note that we use fewer data to
train the surrogate model compared to Wu et al. [78]. Given
SAGE as MS and GIN, GAT, and SAGE as MT , our attack
achieves 0.903, 0.898, and 0.924 fidelity scores respectively
while their attack only achieves 0.818 fidelity score. The
results exemplify that interacting with the target model can
better facilitate the adversary to attain the reconnaissance goal.
Stability. We run each combination 5 times with different
graph partition seeds. It enables us to measure how widely
accuracy/fidelity values are dispersed from the average value
(i.e., standard deviation). A low standard deviation indicates a
low volatility. As we can observe in Table V, the standard
deviation values are low in all cases. It shows that the
adversary can steal from the target models with statistically
stable accuracy and fidelity.
Observation. To achieve high fidelity, the adversary wants to
make sure the mistakes and correct labels are the same be-
tween the surrogate and target models. When the target model
achieves high accuracy, it can make the correct predictions
for most of the test data while making few mistakes. If the
surrogate model gets close to the accuracy performance of the
target model, it would gain high fidelity to the target model
due to the fact the number of correctly predicted instances by

Fig. 4: The accuracy scores of Type II attacks on the Citeseer
dataset using different graph reconstruction methods. We use
GAT as the target model and GraphSAGE as the surrogate
model. The fidelity scores can be found in Appendix Sec-
tion C.

the surrogate model would considerably overlap those made by
the target model. The above Pearson correlation results verify
this intuitive explanation.

Takeaways. The theft adversary can reliably build accurate
surrogate models close to the target models via Type I attacks.
It is worth noting that, in the real world, it is hard for
the reconnaissance adversary to comprehensively verify the
fidelity of the surrogate models without risking a number of
queries. Our results imply that the reconnaissance adversary
may focus on building surrogate models that preserve high
accuracy similar to the target models. In turn, these surrogate
models would likely be faithful to the remote targets. Besides,
our results demonstrate that the adversary does not require
knowledge of the target models’ architectures.

C. Performance Evaluation: Type II Attacks
To launch Type II attacks, the adversary first builds an
adjacency matrix AQ for query graph GQ before querying
the target model MT . We follow the aforementioned graph
reconstruction configuration to restore AQ for query graph
GQ and conduct the model stealing attacks. The performance
of Type II attacks is summarized in Table VII. Due to space
limitations, we only show the attack results when the adversary
uses GraphSAGE as the surrogate model. The performance
results using GIN and GAT as the surrogate models follow
similar patterns and can be found in Appendix Section B.

Accuracy. As we can see in Table VII, given all the datasets,
the adversary can launch Type II.1/2 attacks to build surrogate
models that offer accuracy on par with the target models.
At the same time, we observe that the adversary can launch
Type II.3 attacks and steal usable surrogate models. Take the
Pubmed dataset as an example, when the response is the t-SNE
projection of query nodes, the surrogate models achieve the
average accuracy score of 0.836, 0.739, and 0.850 concerning
different target models. This represents 0.166 accuracy drop
in the worst case (compared to the target model performance).
In general, Type II.3 attacks can achieve comparable accuracy
performance in all 6 datasets. Also, we investigate if the
adversary can build accurate surrogate models given different



TABLE VII: The accuracy and fidelity scores of Type II attacks using different response information on all the 6 datasets.
Both average values and standard deviations are reported. The accuracy differences (in parenthesis) of the surrogate models to
the target models are also reported. We use GraphSAGE as the surrogate model.

Dataset MS

(SAGE)

MT

GIN GAT SAGE

Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity

Projection 0.703±0.018 (-0.169) 0.732±0.018 0.675±0.007 (-0.163) 0.693±0.009 0.713±0.024 (-0.145) 0.761±0.028
Prediction 0.779±0.008 (-0.093) 0.824±0.009 0.782±0.005 (-0.056) 0.832±0.004 0.809±0.004 (-0.049) 0.882±0.004DBLP
Embedding 0.783±0.009 (-0.089) 0.825±0.010 0.787±0.004 (-0.051) 0.834±0.009 0.812±0.004 (-0.046) 0.886±0.003

Projection 0.836±0.015 (-0.088) 0.862±0.015 0.739±0.018 (-0.166) 0.738±0.022 0.850±0.017 (-0.059) 0.893±0.020
Prediction 0.878±0.006 (-0.046) 0.908±0.003 0.867±0.003 (-0.038) 0.897±0.003 0.872±0.004 (-0.037) 0.928±0.004Pubmed
Embedding 0.879±0.004 (-0.045) 0.910±0.005 0.875±0.003 (-0.030) 0.905±0.002 0.881±0.002 (-0.028) 0.941±0.002

Projection 0.647±0.028 (-0.263) 0.658±0.024 0.682±0.030 (-0.229) 0.679±0.033 0.695±0.021 (-0.224) 0.712±0.022
Prediction 0.834±0.012 (-0.076) 0.862±0.011 0.868±0.005 (-0.043) 0.896±0.004 0.880±0.007 (-0.039) 0.928±0.007Citeseer
Embedding 0.827±0.009 (-0.083) 0.850±0.014 0.879±0.006 (-0.032) 0.904±0.008 0.880±0.006 (-0.039) 0.923±0.010

Projection 0.862±0.052 (-0.091) 0.866±0.054 0.864±0.044 (-0.101) 0.867±0.043 0.793±0.044 (-0.163) 0.801±0.046
Prediction 0.955±0.001 (0.002) 0.960±0.001 0.954±0.001 (-0.011) 0.958±0.001 0.954±0.002 (-0.002) 0.976±0.002Coauthor
Embedding 0.950±0.002 (-0.003) 0.955±0.001 0.947±0.003 (-0.018) 0.950±0.002 0.951±0.002 (-0.005) 0.965±0.006

Projection 0.854±0.036 (-0.075) 0.842±0.035 0.888±0.012 (-0.047) 0.904±0.012 0.918±0.007 (-0.019) 0.947±0.008
Prediction 0.911±0.007 (-0.018) 0.899±0.018 0.927±0.004 (-0.008) 0.934±0.006 0.923±0.005 (-0.014) 0.944±0.007ACM
Embedding 0.887±0.012 (-0.042) 0.877±0.010 0.876±0.005 (-0.059) 0.889±0.012 0.921±0.009 (-0.016) 0.944±0.010

Projection 0.640±0.020 (-0.216) 0.640±0.021 0.691±0.015 (-0.262) 0.662±0.019 0.739±0.034 (-0.198) 0.743±0.033
Prediction 0.802±0.031 (-0.054) 0.767±0.026 0.884±0.005 (-0.069) 0.890±0.008 0.922±0.009 (-0.015) 0.931±0.007Amazon
Embedding 0.741±0.109 (-0.115) 0.734±0.117 0.892±0.018 (-0.061) 0.900±0.019 0.938±0.005 (0.001) 0.954±0.005

(a) t-SNE Projection (b) Prediction (c) Embedding
Fig. 5: Heatmap of the accuracy scores of Type II attacks. We show the performance results of 9 combinations of surrogate
and target models given different response information. The accuracy differences (in parenthesis) of the surrogate models to
the target models are also reported. We fix the dataset to Pubmed.

combinations of GNN architectures for each response in Type
II attacks. As we can observe from Figure 5, when the response
is predicted posterior probability or embedding, the accuracy
of the surrogate model is close to the target model. Regarding
the case when the response is t-SNE projection, our attack still
works well. We only witness a slight performance drop when
the target model is GAT. The results exemplify that, in general,
Type II attacks remain effective in stealing target models with
different architectures.

Fidelity. We also observe the same correlation between accu-
racy and fidelity in Type II attacks. That is, the better accuracy
performance a surrogate model can reach, the better fidelity
it can achieve. Take the Coauthor dataset as an example, the
surrogate models reach at least 0.793 accuracy score while
these models achieve at least 0.801 fidelity score to the target
models in all cases. We also calculate the Pearson correlation
coefficient between accuracy and fidelity of the surrogate

models given three target models. The coefficient scores are
0.970, 0.991, and 0.967 respectively. These correlation scores
are similar to what we observe from Type I attack results.

Efficacy of Learned Query Graph Structure. To investigate
the effect of graph structure, we compare IDGL with two
additional methods, i.e., random graph construction and kNN.
For the two additional methods, we set the average node
degree to 24, which is the same value used to initialize IDGL.
Due to space limitations, we only show the accuracy of Type
II attacks on the Citeseer dataset using GAT as the target
model and GraphSAGE as the surrogate model. The accuracy
and fidelity of other datasets follow similar patterns. As we
can see from Figure 4, using IDGL to reconstruct the graph
structure reaches the highest attack accuracy for all responses.
For instance, the accuracy score is 0.879 when using IDGL
as the reconstruction method and taking embedding as the
response, while the corresponding accuracy score is only 0.411



Fig. 6: The average accuracy (fidelity) scores of Type I (Type
II) attacks using different response information on the Pubmed
datasets. We use GraphSAGE as the surrogate model. The x-
axis represents the percentage of randomly selected nodes in
the dataset and the y-axis represents the accuracy (fidelity) of
surrogate models.

and 0.737 respectively when using random graph construction
or kNN as the reconstruction method. It demonstrates that an
effective graph reconstruction method does benefit the final
attack performance.

Stability. As we can observe in Table VII, the standard
deviation values remain low in all cases. This shows that the
adversary can steal the target models with statistically stable
accuracy and fidelity in Type II attacks.

Observation. When comparing Table VII to Table V, we
observe that Type II attack achieves better performance than
Type I attack in certain cases. Chen et al. [11] observed a
similar phenomenon and concluded that the raw graphs are not
always optimal for the downstream tasks for different reasons.
For example, raw graphs may contain noisy/incomplete infor-
mation due to the error-prone data collection or their structures
do not reflect the ideal graph topology after feature extraction
and transformation. The query graphs learned by the IDGL
framework in our Type II attacks are optimized toward the
downstream tasks (e.g., node classification) and may achieve
better performance in some cases. We refer the audience to
Chen et al. [11] for additional details.

Takeaways. Our results show that the attack framework en-
ables the adversary to learn a discrete graph structure and steal
usable surrogate models. Coupling with the results shown in
Section V-B, we demonstrate that our model stealing attacks
achieve strong performance concerning different responses.

D. Performance Evaluation: Query Budget
We then investigate the attack performance with respect to
different query budgets, i.e., different sizes of query graph
GQ. Due to space limitations, we only show the results for
the Pubmed dataset, other datasets follow similar trends. The
corresponding accuracy and fidelity of Type I and II attacks
are summarized in Figure 6. We observe that in general, larger
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Fig. 7: Defense: adding Gaussian noise to t-SNE projection
and node embedding. We report the accuracy scores and
standard deviation of the surrogate model (GraphSAGE) given
all three target models under this defense mechanism (Type I.1
and I.3 attacks, respectively). σ is the standard deviation of the
Gaussian noise. We fix the dataset to ACM.

query budgets lead to better accuracy and fidelity. For instance,
in Type I attack, when the response is GraphSAGE’s embed-
ding, the accuracy score increases from 0.839 to 0.870 when
the query budget increases from 3% to 27%. However, in most
of the cases, we can achieve similar performance even using
only 3% of randomly sampled nodes of the original dataset
(10% of the GQ used in previous experiments). The results
demonstrate that the adversary can still launch effective attacks
even with a low-quality query graph (less query budget and no
graph structure information). Besides, when the query budget
is small, the adversary can investigate the characteristics of
query data (e.g., sparsity of the learned graph) and decide if
edge reconstruction is necessary to launch attacks.

VI. DISCUSSIONS

Limitation. Our model stealing attack is limited to the
scope that the target model returns node-level results. We
did not explore the scenario when the target model accepts
an arbitrary graph as input and returns graph-level results.
That is, the target models represent the whole structure of
graphs using various pooling methods and return a single
embedding vector for downstream graph-level tasks such as
graph classification [82], [85]. Model stealing attack under
this setting would require a different approach. Besides, we
do not jointly optimize both graph structure and surrogate
model. Such training paradigm may cost more training epochs
to converge, and the query budget would also increase, which
inevitably increases the risk of being detected. We put them
into our future work.
Defense. Several countermeasures to model stealing attacks
have been discussed in previous literature [52], [70]. One
straightforward countermeasure is injecting perturbations to
the predicted posterior probability reported by the classifier,
i.e., perturb the probability while retaining the top-1 label [44],
[70]. To cope with different types of query responses, we
consider adding random noise to the response regardless of
the corresponding label, i.e. the distribution of the random
noise is independent of the node class label. Concretely,
we add random Gaussian noise into node embedding and
t-SNE projection returned by all three target models and
use GraphSAGE as the surrogate model to understand the



effectiveness of such countermeasure. According to the defined
threat model, the accuracy of the surrogate model measures
the attack performances. A higher accuracy of the surrogate
model indicates a more successful attack. We use the ACM
dataset as an example and the results are shown in Figure 7.
We observe that the random Gaussian noise slightly affects the
accuracy performance of the surrogate model. For instance,
in Figure 7a, when σ (i.e., the standard deviation of the
added noise) is greater than 7, we can observe the accuracy
performance of the surrogate model starts to decrease for
different target models. In contrast, if the query response
from the target model is the node embedding vector, we can
only observe much fewer fluctuations of the surrogate model’s
accuracy with increasingly stronger random Gaussian noise
injected to the embedding (see Figure 7b). To summarize, our
preliminary experiment does not establish concrete evidence
that adding random noise would counter our attacks. We leave
designing effective defense mechanisms for model stealing
attacks against GNNs as our future work.

VII. RELATED WORK

In this section, we review the research work close to our
proposed attacks. We refer the readers to [23], [42], [81],
[91], [92] for an in-depth overview of different GNN models,
and [10], [14], [37], [66], [83] for comprehensive surveys of
existing adversarial attacks and defense strategies on GNNs.
Model Stealing Attack Against ML Models. Model extrac-
tion is in many ways similar to model distillation, but it differs
in that the victim’s proprietary training set is not accessible
to the adversary. In this regard, previous literature already
investigated stealing various aspects of a black-box ML model
such as hyperparameters [74], architecture [51], information
on training data [27], [28], parameters [4], [70], decision
boundaries [54], and functionality [34], [52]. However, most of
these efforts focused on images. There exist some preliminary
work on model stealing attacks against GNNs [16], [78].
However, they are only focusing on the transductive setting of
GNNs, which cannot generalize to unseen data. Our attacks
instead focus on a more popular and general setting of GNNs,
i.e., inductive setting. We fill the gap and understand if both
theft and reconnaissance adversaries can steal inductive GNNs
with high accuracy and high fidelity.
Causative Attacks on GNNs. Many adversarial attacks to
GNNs [2], [14], [19], [49], [67], [68], [84], [89], [90], [97] are
causative attacks [31]. These attacks assume that an adversary
can manipulate the training dataset in order to change the
parameters of the target model and influence their behavior.
In this context, Zügner et al. [96] was the first to introduce
unnoticeable adversarial perturbations of the node’s features
and the graph structure. Their goal was to reduce the accuracy
of node classification via GCN. After this work, different
adversarial attack strategies have been proposed. Depending
on the attack objectives, they aim at reducing the accuracy
of node classification [2], [7], [49], [68], [84], [97] (node
level), link prediction [2], [9], [46], [67] (edge level), graph
classification [14], [89] (graph level), etc. Our attack does not

tamper with the training graph data and does not change the
behavior of the target model or its parameters.
Exploratory Attacks on GNNs. In reality, however, it is more
practical for the attacker to query the target model and leverage
the model’s responses on these carefully crafted input data.
Consequently, we witness the emerging of exploratory attacks
on ML models. However, adversarial exploratory attacks on
GNNs remain understudied. In particular, only a few stud-
ies [18], [27], [78] focused on exploratory attacks on GNNs.
For instance, He et al. [27] proposed the first link stealing
attack to infer if there exists an edge between a given pair
of nodes in the training graph. Duddu et al. [18] and He et
al. [28] discussed the membership inference attack that infers
whether a given node in the graph was used to train the target
model by leveraging different background knowledge. Note
that, in membership inference attacks, the attack model in
its training phase does not interact with the target model.
However, in model stealing attacks, the surrogate model does
have interaction with the target model since it needs the
guidance of the target model to optimize its parameters.
Defense of Attacks on GNNs. To mitigate those attacks,
several defense strategies have been proposed. The core idea
of the existing defense strategies is reducing the sensitivity of
GNNs using adversarial training [15], [17], [20], [36], [65],
[77], perturbation detection [33], graph sanitization [79], [88],
etc. In turn, the trained GNNs are robust to perturbation (e.g.,
structure perturbation [15], [36], [77], attribution perturba-
tion [17], [20], [36], [65], [77]). Also, robustness certifica-
tion [3], [98] becomes an emerging research direction. They
aim at reasoning the safety posture of GNNs under adversarial
perturbations. However, these defense techniques only protect
GNNs from causative attacks instead of exploratory attacks.

VIII. CONCLUSION

In this paper, we perform the first security risk assessment
against inductive GNNs through the lens of model stealing
attacks. We propose a threat model to systematically categorize
an adversary’s background knowledge into two dimensions,
i.e., query graph and model responses. By jointly considering
the two dimensions, we summarize six attack scenarios. We
then propose a general attack framework that can be applied
in different scenarios. Extensive experiments on three popular
inductive GNN architectures and six benchmark datasets show
that our model stealing attacks can handle different types
of responses and achieve strong performance. Moreover, the
attacks are still effective even the adversary has no knowledge
about the graph structural information.
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APPENDIX

A. Performance Evaluation: Type I attacks (GIN/GAT)
The performance of Type I attacks using GIN and GAT as
surrogate models are summarized in Table VIII and Table IX.

B. Performance Evaluation: Type II attacks (GIN/GAT)
The performance of Type II attacks using GIN and GAT as
surrogate models are summarized in Table X and Table XI.

C. Fidelity
The fidelity score of Type II attacks on the Citeseer dataset
using different graph reconstruction methods is shown in
Figure 8.

D. Hyperparameter Study
GNNs are complex and their performance may be affected
by the hyperparameter settings. This is especially important
for our model stealing attack since we use inductive GNNs
as the part of our surrogate models. At the same time, our
attack is in a full black-box setting. As such, we evaluate
the impact of three hyperparameters on the performance of
surrogate models, i.e., hidden unit size, number of epochs,
and batch size. For each hyperparameter, we only show the
results on one dataset under Type I attacks given the space
limitation. Other datasets follow a similar trend.
Hidden Unit Size. In general, the larger the hidden units, the
greater space of representation functions a graph convolutional

(a) t-SNE Projection (b) Prediction
Fig. 9: Hyperparameter study: hidden unit size. We show the
influence of different combinations of the hidden unit size on
the surrogate model’s performance.
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Fig. 10: Hyperparameter study: number of epochs. We report
the accuracy and standard deviation of the surrogate model
(GraphSAGE) under Type I attacks given different number of
epochs. We fix the dataset to ACM.
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Fig. 11: Hyperparameter study: batch size. We report the ac-
curacy and standard deviation of the surrogate model (Graph-
SAGE) under Type I attacks given different batch sizes. We
fix the dataset to ACM.

layer can offer. As such, we investigate how the hidden
unit size may affect the attack performance. Recall that the
adversary does not know the target model’s hidden unit size.
They can only blindly guess the hidden unit size used by
the target model. To this end, we first build a target model
(i.e., GAT) with 64, 128, and 256 hidden units using Citeseer
dataset. We then launch Type I attacks using a fixed surrogate
model (i.e., GraphSAGE) with 64, 128, and 256 hidden units.
In this way, we can observe the potential performance changes
in different circumstances. The results are shown in Figure 9a
and Figure 9b, respectively. We can see that different hidden
unit sizes adopted by the surrogate models have a limited
impact on the accuracy performance. Our hypothesis is that



TABLE VIII: The accuracy and fidelity score of Type I attacks using different response information on all the 6 datasets. Both
average values and standard deviations are reported. The accuracy differences (in parenthesis) of the surrogate models to the
target models are also reported. We use GIN as the surrogate model.

Dataset MS

(GIN)

MT

GIN GAT SAGE

Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity

Projection 0.710±0.028 (-0.162) 0.737±0.031 0.677±0.005 (-0.161) 0.696±0.008 0.719±0.033 (-0.139) 0.761±0.037
Prediction 0.751±0.003 (-0.121) 0.788±0.008 0.775±0.004 (-0.063) 0.826±0.004 0.819±0.002 (-0.039) 0.897±0.001DBLP
Embedding 0.743±0.005 (-0.129) 0.769±0.003 0.792±0.004 (-0.046) 0.836±0.004 0.805±0.003 (-0.053) 0.874±0.007

Projection 0.838±0.027 (-0.086) 0.861±0.030 0.753±0.015 (-0.152) 0.767±0.015 0.776±0.058 (-0.133) 0.813±0.066
Prediction 0.875±0.004 (-0.049) 0.905±0.005 0.868±0.004 (-0.037) 0.896±0.005 0.876±0.003 (-0.033) 0.932±0.002Pubmed
Embedding 0.883±0.004 (-0.041) 0.912±0.003 0.877±0.004 (-0.028) 0.903±0.003 0.884±0.001 (-0.025) 0.937±0.004

Projection 0.675±0.018 (-0.236) 0.658±0.016 0.715±0.012 (-0.196) 0.701±0.014 0.733±0.011 (-0.186) 0.727±0.009
Prediction 0.808±0.005 (-0.103) 0.816±0.006 0.878±0.004 (-0.033) 0.909±0.002 0.895±0.001 (-0.024) 0.942±0.002Citeseer
embedding 0.791±0.005 (-0.120) 0.806±0.007 0.889±0.005 (-0.022) 0.913±0.005 0.881±0.006 (-0.038) 0.917±0.006

Projection 0.824±0.038 (-0.129) 0.826±0.039 0.813±0.017 (-0.152) 0.816±0.018 0.796±0.049 (-0.160) 0.806±0.051
Prediction 0.920±0.002 (-0.033) 0.925±0.003 0.945±0.001 (-0.020) 0.948±0.002 0.956±0.002 (-0.000) 0.976±0.001Coauthor
Embedding 0.900±0.005 (-0.053) 0.907±0.007 0.944±0.001 (-0.021) 0.945±0.001 0.947±0.007 (-0.009) 0.962±0.007

Projection 0.824±0.020 (-0.105) 0.819±0.023 0.835±0.044 (-0.100) 0.849±0.048 0.892±0.018 (-0.045) 0.913±0.022
Prediction 0.829±0.014 (-0.100) 0.826±0.015 0.916±0.008 (-0.019) 0.925±0.009 0.918±0.007 (-0.019) 0.946±0.004ACM
Embedding 0.860±0.010 (-0.069) 0.859±0.019 0.920±0.006 (-0.015) 0.930±0.004 0.917±0.014 (-0.020) 0.944±0.014

Projection 0.717±0.037 (-0.139) 0.726±0.024 0.719±0.021 (-0.234) 0.725±0.020 0.764±0.028 (-0.173) 0.779±0.030
Prediction 0.893±0.006 (0.037) 0.848±0.016 0.930±0.008 (-0.023) 0.935±0.007 0.933±0.004 (-0.004) 0.943±0.005Amazon
Embedding 0.897±0.005 (0.041) 0.830±0.021 0.929±0.006 (-0.024) 0.935±0.006 0.931±0.005 (-0.006) 0.934±0.006

TABLE IX: The accuracy and fidelity score of Type I attacks using different response information on all the 6 datasets. Both
average values and standard deviations are reported. The accuracy differences (in parenthesis) of the surrogate models to the
target models are also reported. We use GAT as the surrogate model.

Dataset MS

(GAT)

MT

GIN GAT SAGE

Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity

Projection 0.723±0.007 (-0.149) 0.754±0.008 0.671±0.010 (-0.167) 0.689±0.013 0.746±0.007 (-0.112) 0.793±0.005
Prediction 0.745±0.006 (-0.127) 0.784±0.008 0.782±0.004 (-0.056) 0.834±0.005 0.809±0.005 (-0.049) 0.880±0.005DBLP
Embedding 0.696±0.010 (-0.176) 0.722±0.007 0.796±0.006 (-0.042) 0.844±0.006 0.762±0.039 (-0.096) 0.819±0.048

Projection 0.852±0.003 (-0.072) 0.887±0.003 0.786±0.026 (-0.119) 0.805±0.025 0.847±0.004 (-0.062) 0.893±0.005
Prediction 0.862±0.000 (-0.062) 0.899±0.002 0.862±0.002 (-0.043) 0.899±0.003 0.863±0.004 (-0.046) 0.921±0.004Pubmed
Embedding 0.848±0.006 (-0.076) 0.873±0.006 0.869±0.002 (-0.036) 0.906±0.003 0.864±0.012 (-0.045) 0.911±0.018

Projection 0.743±0.008 (-0.168) 0.746±0.007 0.755±0.003 (-0.156) 0.763±0.009 0.786±0.009 (-0.133) 0.798±0.011
Prediction 0.798±0.008 (-0.113) 0.808±0.013 0.880±0.004 (-0.031) 0.908±0.007 0.894±0.004 (-0.025) 0.935±0.005Citeseer
Embedding 0.776±0.013 (-0.135) 0.783±0.012 0.895±0.002 (-0.016) 0.929±0.005 0.885±0.004 (-0.034) 0.912±0.004

Projection 0.847±0.009 (-0.106) 0.857±0.009 0.845±0.009 (-0.120) 0.849±0.009 0.728±0.011 (-0.228) 0.738±0.012
Prediction 0.879±0.006 (-0.074) 0.889±0.006 0.932±0.004 (-0.033) 0.939±0.004 0.889±0.009 (-0.067) 0.903±0.009Coauthor
Embedding 0.888±0.007 (-0.065) 0.893±0.007 0.945±0.002 (-0.020) 0.950±0.003 0.885±0.031 (-0.071) 0.895±0.033

Projection 0.848±0.022 (-0.081) 0.848±0.021 0.871±0.014 (-0.064) 0.895±0.011 0.893±0.019 (-0.044) 0.922±0.019
Prediction 0.840±0.023 (-0.089) 0.846±0.025 0.906±0.004 (-0.029) 0.929±0.007 0.893±0.010 (-0.044) 0.927±0.008ACM
Embedding 0.869±0.012 (-0.060) 0.878±0.009 0.902±0.011 (-0.033) 0.922±0.009 0.870±0.024 (-0.067) 0.896±0.024

Projection 0.634±0.050 (-0.222) 0.623±0.069 0.780±0.034 (-0.173) 0.786±0.038 0.781±0.010 (-0.156) 0.792±0.011
Prediction 0.804±0.030 (-0.052) 0.780±0.051 0.921±0.006 (-0.032) 0.937±0.006 0.893±0.013 (-0.044) 0.907±0.017Amazon
Embedding 0.857±0.012 (0.001) 0.819±0.034 0.922±0.004 (-0.031) 0.938±0.004 0.906±0.020 (-0.031) 0.924±0.024

the inductive GNN models employed as surrogate models are
powerful enough to extract information from the responses.

Number of Epochs and Batch Size. The number of epochs
and batch size are the other two hyperparameters that may
affect attack performance but can be controlled by the ad-
versary. Respectively they control the number of complete
passes through the training dataset and the number of samples
processed before the GNN model is updated. Batch size may
affect the speed and stability of the learning process, while the
number of epochs may lead to overfitting. To this end, we fix
the surrogate model to GraphSAGE and the target models to

GIN and GAT to understand the impact of both hyperparame-
ters. We use 150, 200, 250, 300 for the number of epochs, and
400, 600, 800, 1000 for bath sizes. The results are summarized
in Figure 10 and Figure 11, respectively. Regarding the number
of epochs, the accuracy is relatively stable with respect to
different numbers of epochs (see Figure 10). Meanwhile, as
we can observe in Figure 11, a larger batch size may have
some negative impact on the attack accuracy.

Takeaways. Inductive GNN models employed as surrogate
models are powerful enough to extract information from the
responses. We observe that a large batch size may have a



TABLE X: The accuracy and fidelity score of Type II attacks using different response information on all the 6 datasets. Both
average values and standard deviations are reported. The accuracy differences (in parenthesis) of the surrogate models to the
target models are also reported. We use GIN as the surrogate model.

Dataset MS

(GIN)

MT

GIN GAT SAGE

Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity

Projection 0.715±0.028 (-0.157) 0.751±0.035 0.680±0.005 (-0.158) 0.701±0.006 0.724±0.025 (-0.134) 0.775±0.029
Prediction 0.788±0.002 (-0.084) 0.839±0.005 0.775±0.003 (-0.063) 0.835±0.003 0.818±0.004 (-0.040) 0.899±0.006DBLP
Embedding 0.785±0.012 (-0.087) 0.826±0.015 0.794±0.004 (-0.044) 0.846±0.015 0.803±0.004 (-0.055) 0.876±0.004

Projection 0.826±0.029 (-0.098) 0.851±0.034 0.736±0.022 (-0.169) 0.750±0.020 0.818±0.064 (-0.091) 0.855±0.076
Prediction 0.873±0.004 (-0.051) 0.904±0.003 0.870±0.003 (-0.035) 0.898±0.002 0.876±0.002 (-0.033) 0.933±0.005Pubmed
Embedding 0.885±0.004 (-0.039) 0.913±0.004 0.882±0.001 (-0.023) 0.910±0.003 0.882±0.004 (-0.027) 0.933±0.007

Projection 0.665±0.026 (-0.246) 0.673±0.023 0.673±0.021 (-0.238) 0.679±0.014 0.726±0.030 (-0.193) 0.740±0.026
Prediction 0.841±0.014 (-0.070) 0.877±0.010 0.880±0.008 (-0.031) 0.922±0.003 0.896±0.005 (-0.023) 0.952±0.006Citeseer
Embedding 0.814±0.014 (-0.097) 0.836±0.012 0.889±0.005 (-0.022) 0.924±0.004 0.884±0.004 (-0.035) 0.930±0.003

Projection 0.859±0.040 (-0.094) 0.849±0.040 0.839±0.053 (-0.126) 0.844±0.054 0.744±0.048 (-0.212) 0.751±0.048
Prediction 0.951±0.001 (-0.002) 0.955±0.001 0.955±0.003 (-0.010) 0.960±0.002 0.956±0.001 (-0.000) 0.979±0.001Coauthor
Embedding 0.947±0.004 (-0.006) 0.953±0.003 0.951±0.001 (-0.014) 0.954±0.002 0.949±0.004 (-0.007) 0.963±0.006

Projection 0.856±0.036 (-0.073) 0.850±0.047 0.876±0.055 (-0.059) 0.886±0.056 0.893±0.030 (-0.044) 0.921±0.030
Prediction 0.902±0.008 (-0.027) 0.899±0.012 0.928±0.005 (-0.007) 0.941±0.006 0.934±0.006 (-0.003) 0.962±0.004ACM
Embedding 0.901±0.011 (-0.028) 0.891±0.017 0.925±0.005 (-0.010) 0.937±0.004 0.928±0.007 (-0.009) 0.947±0.008

Projection 0.653±0.052 (-0.203) 0.668±0.058 0.657±0.039 (-0.296) 0.656±0.041 0.764±0.029 (-0.173) 0.774±0.028
Prediction 0.892±0.018 (0.036) 0.854±0.016 0.907±0.010 (-0.046) 0.914±0.005 0.943±0.005 (0.006) 0.953±0.006Amazon
Embedding 0.912±0.010 (0.056) 0.860±0.006 0.933±0.005 (-0.020) 0.941±0.010 0.939±0.002 (0.002) 0.956±0.004

TABLE XI: The accuracy and fidelity score of Type II attacks using different response information on all the 6 datasets. Both
average values and standard deviations are reported. The accuracy differences (in parenthesis) of the surrogate models to the
target models are also reported. We use GAT as the surrogate model.

Dataset MS

(GAT)

MT

GIN GAT SAGE

Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity

Projection 0.702±0.023 (-0.170) 0.727±0.027 0.668±0.007 (-0.170) 0.693±0.011 0.746±0.023 (-0.112) 0.793±0.032
Prediction 0.739±0.010 (-0.133) 0.784±0.012 0.779±0.005 (-0.059) 0.834±0.014 0.806±0.004 (-0.052) 0.881±0.005DBLP
Embedding 0.741±0.006 (-0.131) 0.774±0.009 0.800±0.006 (-0.038) 0.853±0.008 0.743±0.032 (-0.115) 0.779±0.042

Projection 0.822±0.023 (-0.102) 0.850±0.024 0.746±0.054 (-0.159) 0.765±0.053 0.844±0.024 (-0.065) 0.889±0.030
Prediction 0.837±0.008 (-0.087) 0.869±0.010 0.861±0.003 (-0.044) 0.896±0.004 0.861±0.002 (-0.048) 0.917±0.004Pubmed
Embedding 0.854±0.011 (-0.070) 0.880±0.012 0.873±0.004 (-0.032) 0.911±0.003 0.863±0.006 (-0.046) 0.909±0.010

Projection 0.704±0.017 (-0.207) 0.719±0.017 0.750±0.022 (-0.161) 0.762±0.025 0.768±0.019 (-0.151) 0.796±0.022
Prediction 0.800±0.010 (-0.111) 0.838±0.014 0.883±0.005 (-0.028) 0.916±0.006 0.890±0.002 (-0.029) 0.941±0.003Citeseer
Embedding 0.807±0.023 (-0.104) 0.819±0.026 0.893±0.011 (-0.018) 0.932±0.007 0.876±0.005 (-0.043) 0.914±0.007

Projection 0.643±0.100 (-0.310) 0.649±0.101 0.762±0.077 (-0.203) 0.764±0.080 0.724±0.031 (-0.232) 0.733±0.031
Prediction 0.823±0.052 (-0.130) 0.831±0.054 0.871±0.033 (-0.094) 0.877±0.034 0.795±0.029 (-0.161) 0.806±0.032Coauthor
Embedding 0.864±0.020 (-0.089) 0.871±0.021 0.882±0.036 (-0.083) 0.887±0.036 0.741±0.085 (-0.215) 0.750±0.087

Projection 0.834±0.011 (-0.095) 0.838±0.009 0.896±0.012 (-0.039) 0.921±0.011 0.910±0.008 (-0.027) 0.940±0.011
Prediction 0.880±0.004 (-0.049) 0.889±0.021 0.915±0.007 (-0.020) 0.946±0.007 0.917±0.004 (-0.020) 0.956±0.004ACM
Embedding 0.909±0.006 (-0.020) 0.913±0.012 0.907±0.007 (-0.028) 0.928±0.008 0.908±0.015 (-0.029) 0.941±0.018

Projection 0.674±0.040 (-0.182) 0.590±0.058 0.661±0.055 (-0.292) 0.557±0.060 0.739±0.015 (-0.198) 0.694±0.019
Prediction 0.765±0.076 (-0.091) 0.653±0.074 0.881±0.024 (-0.072) 0.753±0.022 0.849±0.024 (-0.088) 0.752±0.029Amazon
Embedding 0.853±0.035 (-0.003) 0.767±0.023 0.897±0.010 (-0.056) 0.869±0.014 0.832±0.043 (-0.105) 0.756±0.051

negative impact on the attack accuracy. Other hyperparameters
such as hidden unit size and the number of epochs have a
limited impact on the accuracy of the surrogate models.
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